HFEmbeddingDeployModelParameters Configuration
HFEmbeddingDeployModelParameters(name: str, provider: str = 'hf', verbose: Optional[bool] = False, concurrency: Optional[int] = 100, path: Optional[str] = None, device: Optional[str] = None, cache_folder: Optional[str] = None, normalize_embeddings: bool = False, multi_process: bool = False, model_kwargs: Dict[str, Any] = <factory>, encode_kwargs: Dict[str, Any] = <factory>, embed_instruction: Optional[str] = None, query_instruction: Optional[str] = None)
Parameters
Name | Type | Required | Description |
---|---|---|---|
name | string | ✅ | The name of the model. |
path | string | ❌ | The path of the model, if you want to deploy a local model. |
device | string | ❌ | Device to run model. If None, the device is automatically determined |
provider | string | ❌ | The provider of the model. If model is deployed in local, this is the inference type. If model is deployed in third-party service, this is platform name('proxy/<platform>') Defaults: hf |
verbose | boolean | ❌ | Show verbose output. Defaults: False |
concurrency | integer | ❌ | Model concurrency limit Defaults: 100 |
cache_folder | string | ❌ | Path of the cache folder. |
normalize_embeddings | boolean | ❌ | Normalize embeddings. Defaults: False |
multi_process | boolean | ❌ | Run encode() on multiple GPUs. Defaults: False |
model_kwargs | object | ❌ | Keyword arguments to pass to the model. Defaults: {} |
encode_kwargs | object | ❌ | Keyword arguments to pass when calling the `encode` method. Defaults: {} |
embed_instruction | string | ❌ | Instruction to use for embedding documents. Just for Instructor model. |
query_instruction | string | ❌ | Instruction to use for embedding query. Just for Instructor model. |