BM25 RAG
In this example, we will show how to use the Elasticsearch as in DB-GPT RAG Storage. Using a Elasticsearch database to implement RAG can, to some extent, alleviate the uncertainty and interpretability issues brought about by Elasticsearch database retrieval.
Install Dependencies
First, you need to install the dbgpt elasticsearch storage
library.
uv sync --all-packages --frozen \
--extra "base" \
--extra "proxy_openai" \
--extra "rag" \
--extra "storage_elasticsearch" \
--extra "dbgpts"
Prepare Elasticsearch
Prepare Elasticsearch database service, reference-Elasticsearch Installation .
Elasticsearch Configuration
Set rag storage variables below in configs/dbgpt-bm25-rag.toml
file, let DB-GPT know how to connect to Elasticsearch.
[rag.storage]
[rag.storage.full_text]
type = "ElasticSearch"
uri = "127.0.0.1"
port = "9200"
Then run the following command to start the webserver:
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-bm25-rag.toml
Optionally
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-bm25-rag.toml