Milvus RAG
In this example, we will show how to use the Milvus as in DB-GPT RAG Storage. Using a graph database to implement RAG can, to some extent, alleviate the uncertainty and interpretability issues brought about by vector database retrieval.
Install Dependencies
First, you need to install the dbgpt milvus storage
library.
uv sync --all-packages \
--extra "base" \
--extra "proxy_openai" \
--extra "rag" \
--extra "storage_milvus" \
--extra "dbgpts"
Prepare Milvus
Prepare Milvus database service, reference-Milvus Installation .
TuGraph Configuration
Set rag storage variables below in configs/dbgpt-proxy-openai.toml
file, let DB-GPT know how to connect to Milvus.
[rag.storage]
[rag.storage.vector]
type = "Milvus"
uri = "127.0.0.1"
port = "19530"
#username="dbgpt"
#password=19530
Then run the following command to start the webserver:
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-proxy-openai.toml
Optionally, you can also use the following command to start the webserver:
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-proxy-openai.toml