Oceanbase Vector RAG
In this example, we will show how to use the Oceanbase Vector as in DB-GPT RAG Storage. Using a graph database to implement RAG can, to some extent, alleviate the uncertainty and interpretability issues brought about by vector database retrieval.
Install Dependencies
First, you need to install the dbgpt Oceanbase Vector storage
library.
uv sync --all-packages \
--extra "base" \
--extra "proxy_openai" \
--extra "rag" \
--extra "storage_obvector" \
--extra "dbgpts"
Prepare Oceanbase Vector
Prepare Oceanbase Vector database service, referenceOceanbase Vector .
TuGraph Configuration
Set rag storage variables below in configs/dbgpt-proxy-openai.toml
file, let DB-GPT know how to connect to Oceanbase Vector.
[rag.storage]
[rag.storage.vector]
type = "Oceanbase"
uri = "127.0.0.1"
port = "19530"
#username="dbgpt"
#password=19530
Then run the following command to start the webserver:
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-proxy-openai.toml
Optionally, you can also use the following command to start the webserver:
uv run python packages/dbgpt-app/src/dbgpt_app/dbgpt_server.py --config configs/dbgpt-proxy-openai.toml